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In psychological, social, behavioral, and medical studies, hidden Markov models (HMMs) 
have been extensively applied to the simultaneous modeling of longitudinal observations 
and the underlying dynamic transition process. However, the existing HMMs mainly focus 
on constant-coefficient HMMs. This study considers a varying-coefficient HMM, which 
enables simultaneous investigation of the dynamic covariate effects and between-state 
transitions. Moreover, a soft-thresholding operator is introduced to detect zero-effect 
regions of the coefficient functions. A full Bayesian approach with a hybird Markov chain 
Monte Carlo algorithm that combines B-spline approximation and penalization technique 
is developed for statistical inference. The empirical performance of the propose method is 
evaluated through simulation studies. An application to a study on the Alzheimer’s Disease 
Neuroimaging Initiative dataset is presented.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Heterogeneous longitudinal data are frequently encountered in the medical, behavioral, social-economic, environmental, 
and psychological sciences. Hidden Markov model (HMM), which consists of a transition model to describe the dynamic 
transition of hidden states and a conditional regression model for examining state-specific covariate effects on the response 
of interest, provides a useful model framework to accommodate heterogeneous and longitudinal features (Cappé et al., 2005; 
Scott et al., 2005; Altman, 2007; Robert et al., 2000; Bartolucci and Farcomeni, 2009). HMM and its variants have attracted 
significant attention from various disciplines, owing to its ability to simultaneously reveal the longitudinal association struc-
ture and dynamic heterogeneity of the observed process (Gupta et al., 2007; Ip et al., 2013; Song et al., 2017; Marino et 
al., 2018; Yen and Chen, 2018; Kang et al., 2019; Liu et al., 2021). Despite the rapid developments and wide applications of 
HMMs, the existing literature has mainly focused on constant-coefficient HMMs, in which the conditional regression model 
assumes invariant covariate effects in each state. However, these effects may vary according to certain variables, leading 
to functional coefficients of interest. A highly comprehensive analysis should consider varying coefficients in the context of 
HMMs to discover the state-specific dynamic patterns of covariate effects on the response variable.

Varying-coefficient models (Hastie and Tibshirani, 1993) are important techniques for exploring the dynamic relation-
ships between a response variable and potential predictors through coefficients that vary with certain modifiers (Hoover et 
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al., 1998; Fan and Zhang, 1999; Chiang et al., 2001; Eubank et al., 2004; Ma and Song, 2015). Early development on varying-
coefficient models mainly focuses on estimation of coefficient functions. Hoover et al. (1998) estimated coefficient functions 
through smoothing splines. Fan and Zhang (1999) proposed a two-step procedure to estimate varying coefficients. Wu et 
al. (2000) considered a smoothing spline method for varying-coefficient models with repeated measurements, and Chiang 
et al. (2001) further extended their method to accommodate repeatedly measured dependent variables. Zhang et al. (2002)
proposed local polynomial fitting in a semivarying coefficient model. Huang et al. (2002, 2004) used regression splines to 
analyze varying-coefficient models with longitudinal data. Ye et al. (2019) proposed a nested expectation–maximization 
algorithm with penalized likelihood to analyze finite mixture varying-coefficient models. Meanwhile, varying-coefficient 
models have also been developed in the Bayesian framework (e.g., Biller and Fahrmeir, 2001; Dunson et al., 2003; Haneuse 
et al., 2008). In the context of mixture varying-coefficient models, Lu and Song (2012) developed a Bayesian penalized spline 
method to estimate component-specific varying coefficients. However, to the best of our knowledge, no existing study has 
investigated varying-coefficient HMMs.

In the analysis of varying-coefficient models, an important issue is the detection of zero-effect regions, especially when 
the effect changes from positive to negative or vice versa. For instance, in the study on opioid use for pain treatment, opioid 
use is found to be ineffective in relieving pain in certain BMI ranges (Yang, 2020). A common method for the effect shrink-
age is to introduce a soft-thresholded function, which was originally proposed by Donoho and Johnstone (1994) for wavelet 
shrinkage. Tibshirani (1996) discussed the relationship between the least absolute shrinkage and selection operator (lasso) 
and soft-thresholded estimators; he pointed out that the lasso estimator is reduced to a soft-thresholded estimator when 
the design matrix is orthonormal. Kang et al. (2018) proposed a soft-thresholded Gaussian process prior to spatial variable 
selection for scalar-on-image regression. Yang (2020) further introduced a soft-thresholding operator to varying-coefficient 
models and demonstrated that the soft-thresholded estimator can effectively uncover zero-effect regions of varying coeffi-
cients. Nevertheless, the preceding works did not consider HMMs, and thus cannot accommodate the dynamic heterogeneity, 
state-specific functional covariate effects, and state-specific zero-effect regions of varying coefficients.

In the present study, we consider a varying-coefficient HMM to analyze multivariate, heterogeneous, and longitudinal 
data. The model comprises two major components. The first component is a continuation-ratio logit transition model for 
investigating the influence of potential covariates on the probabilities of transition from one hidden state to another. The 
second component is a varying-coefficient regression model for exploring the dynamic relationships between the response 
and potential covariates. Moreover, a soft-thresholding operator is introduced to varying coefficients to uncover their zero-
effect regions. This study contributes the literature in several aspects. First, it is the first to consider a varying-coefficient 
HMM. Thus, the dynamic patterns of heterogeneous covariate effects can be simultaneously investigated. Second, we intro-
duce a soft-thresholding operator to the proposed model, thereby enabling us to effectively detect state-specific zero-effect 
regions and quantify the associated uncertainty. Lastly, we develop a full Bayesian approach and a hybrid algorithm that 
combines B-spline approximation and penalization techniques to conduct statistical inference. The proposed inference pro-
cedure is different from the existing Gaussian process-based approach (Kang et al., 2018) and frequentist method (Yang, 
2020). The superiority of the proposed method is demonstrated through numerical studies.

The proposed method is motivated by an actual study conducted by the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI). With the increase in human life expectancy, Alzheimer’s disease (AD) has attracted considerable attention from 
society and medical research. The most common early symptom of AD is short-term memory loss, also referred to mild 
cognitive impairment (MCI). Patients at MCI state have high likelihood to transit to dementia or AD within a few years. 
Functional assessment questionnaire (FAQ), an assessment of abilities to function independently in daily life, has been 
widely used to monitor cognitive impairment due to short-term memory loss. The FAQ score and a set of biomarkers, such 
as gender, age, educational levels, hippocampal volume, and apolipoprotein E (APOE)-ε4, were collected across multiple 
time points in the ADNI dataset. The main goal of this study is to investigate the potential risk factors of AD from several 
perspectives, including (i) identifying various AD pathology states and the factors that affect the between-state transition, 
(ii) investigating the state-specific associations between FAQ and its potential risk factors, and (iii) revealing new insights 
into the pathological mechanism of AD. We are particularly interested in how participants’ education years relate to their 
cognitive impairment interactively with other potential risk factors, such as hippocampal volume and age, considering that 
cognitive ability is highly associated with education level. Moreover, previous studies (e.g., Kang et al., 2019) revealed 
that the effects of hippocampal volume and age may exhibit zero-effect regions in early cognitive impairment stage. The 
proposed model accommodates these features and enables us to reveal the underlying hidden states of cognitive impairment 
and their transition mechanism, examine the change in the effects of risk factors over different education levels in each state, 
and uncover the zero-effect regions of the covariate effects.

The remainder of this article is organized as follows. Section 2 describes the proposed varying-coefficient HMM. Section 3
introduces a Bayesian approach, which incorporates B-splines for approximating unknown coefficient functions, the soft-
thresholding operator for detecting zero-effect regions of the varying coefficients, the sieve spline space and penalized 
likelihood procedure for identifying a unique between-function mapping, and Markov chain Monte Carlo (MCMC) methods 
for posterior sampling. Section 4 conducts simulation studies to assess the empirical performance of the proposed method. 
Section 5 presents an application regarding the ADNI study. Section 6 presents the conclusion. Technical details are provided 
in the Appendix.
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2. Model

For subject i = 1, · · · , N at t = 1, · · · , T , we assume that {zit}T
t=1 is Markovian of order one, taking values in {1, · · · , S}

and satisfying the following:

P (zit = s|zi1, · · · , zi,t−1 = u) = P (zit = s|zi,t−1 = u)
�= pitus, t ≥ 2, (1)

where pitus is the transition probability of subject i from state zi,t−1 = u at occasion t − 1 to state zit = s at occasion t . The 
initial distribution of zi1 is assumed to be a multinomial distribution with probabilities (p1, p2, · · · , pS), such that ps ≥ 0
and 

∑S
s=1 ps = 1. The distribution of {zit}T

t=1 is then fully determined by the transition probabilities and distribution of the 
initial state.

Following the existing literature (Ip et al., 2013; Song et al., 2017), we assume that hidden states {1, · · · , S} are ordered. 
Instead of directly modeling pitus , we consider a continuation-ratio logistic model for ηitus = P (zit = s|zit ≥ s, zi,t−1 = u), 
s = 1, · · · , S − 1 as follows: for i = 1, · · · , N, t = 2, · · · , T , u = 1, · · · , S, s = 1, · · · , S − 1,

logit(ηitus) = log
P (zit = s|zi,t−1 = u)

P (zit > s|zi,t−1 = u)
= log

pitus

pitu,s+1 + · · · + pituS

= ϕus + α′cit,

(2)

where the left-hand side can be interpreted as the log odds of subject i transitioning to state s rather than to a higher 
state at occasion t given that his/her previous state at occasion t − 1 is u, {ϕus : u = 1, · · · , S, s = 1, · · · , S − 1} are state-
specific intercepts, cit is an m-dimensional vector of covariates that may influence the transition probabilities, and α is an 
m-dimensional vector of coefficients that can be interpreted as conditional log odds ratios in a logistic regression. On the 
basis of Equation (2), we can obtain the followings:

pitus = exp(ϕus + α′cit)∏s
k=1{1 + exp(ϕuk + α′cit)} , s = 1, . . . , S − 1,

pituS = 1∏S−1
k=1 {1 + exp(ϕuk + α′cit)}

. (3)

For i = 1, · · · , N, t = 1, · · · , T , let yit be an observation process. Given hidden state zit = s, the conditional varying-
coefficient regression model is defined as follows:

[yit |zit = s] = bs +
r∑

j=1

gsj(wit j)xit j + εit, (4)

where bs is a state-specific intercept; xit j represents observed covariates; wit j is an independent variable; gsj(wit j) is a state-
specific varying coefficient, which allows the effect of xit j to be state-specific and vary smoothly over the group stratified by 
wit j , and thus permits nonlinear interaction between wit j and xit j ; r is the number of covariates; and εit is a random error 
independently distributed according to N(0, σ 2

s ). For function gsj(wit j), we make three assumptions, namely, (i) continuity, 
(ii) zero-effect regions exist, and (iii) piecewise smoothness. The proposed model includes three different types of covariates, 
cit , wit j , and xit j , where cit and wit j or xit j can be overlapped. We may determine these covariates in substantive research 
based on study objectives, subjects’ knowledge, variables’ meanings, and experts’ suggestions (see Section 5). In addition, 
we can use a model selection criterion, such as the deviance information criterion (DIC, Celeux et al., 2006), to select an 
appropriate model if needed.

3. Bayesian inference

3.1. Soft-thresholded operator

To detect the zero-effect regions of a functional coefficient g(w), we consider soft thresholding operator ζλ (Kang et al., 
2018) to map g(w) near zero to exact zero as follows:

ζλ(h) =
{

0, |h| ≤ λ,

sgn(h)(|h| − λ), |h| > λ,
(5)

where sgn(h) = 1 if h > 0, sgn(h) = −1 if h < 0, and sgn(0) = 0. Equivalently, ζλ(h) = (h − λ)I{h > λ} + (h + λ)I{h < −λ}. 
Thresholding parameter λ > 0 determines the degree of sparsity. As illustrated by Yang (2020), for any function g(w) and 
any λ > 0, at least one h(w) exists, such that ζλ(h(w)) = g(w).
3
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By substituting gsj(wit j) with ζλsj (hsj(wit j)) in model (4), we obtain the following:

[yit |zit = s] = bs +
r∑

j=1

ζλsj (hsj(wit j))xit j + εit . (6)

Threshold parameter λsj plays a vital role in the soft-threshold method. Yang (2020) pointed out that any given positive 
real number can be used as the threshold. In this study, we regard λsj as a random variable and estimate it together with 
other parameters.

3.2. B-splines

B-splines are commonly used to approximate a nonparametric function. The basic idea of the spline approximation is to 
estimate each unknown smooth function through the sum of B-spline basis functions. Then, hsj (w) can be approximated 
through B-splines as follows:

hsj(w) =
L∑

l=1

βsjl Bl(w) = βT
sj B(w), (7)

where L is the number of splines, β sj = (βsj1, . . . , βsjL)
T is the vector of unknown coefficients, Bl(·)s are B-spline basis 

functions of cubic order, and B(w) = (B1(w), . . . , B L(w))T . For notation simplicity, the number of knots L and B-spline 
basis functions Bl(·)s are assumed to be invariant across different s and j. Extension to the case, where L and Bl(·)s are s-
and j-specific, is straightforward. With the B-spline approximation, the “working model” can be written as follows:

[yit |zit = s] = bs +
r∑

j=1

ζλsj

( L∑
l=1

βsjl Bl(wit j)
)

xit j + εit . (8)

3.3. Model identification

The soft-thresholding operator ζλ(·) defined in Equation (5) maps different smooth h(·)s with different thresholding 
parameters to the same g(·). Even for a fixed λ, ζλ(h(·)) may not be uniquely defined. Thus, ζλ(h(w)) is not estimable 
without further constraints. We follow Yang (2020) to use the methods of spline sieve space and penalized loss function 
to determine a unique ζλ(h(·)) for g(·). Spline sieve space method determines a reasonable number of knots in accordance 
with the sample size to prevent overfitting and reduce the scope of function h(·). Then, to identify a unique hsj(w) that 
corresponds to gsj(w), we introduce a penalty term to penalize “the length of hsj(w),” namely, ‖hsj(w)‖ D= (

βT
sjBs(w)

)2
, 

such that a unique hsj(w) with minimal length within the range determined by the spline sieve space is identified. This 
process is equivalent to minimizing the following penalized likelihood function.

Let Y = {yit , i = 1, · · · , N; t = 1, · · · , T }, Z = {zit , i = 1, · · · , N; t = 1, · · · , T }, and θ be the vector of all unknown parame-
ters in the model. With the B-splines approximation, the complete-data likelihood function is as follows:

Lik = P (Y,Z|θ) = P (Y|Z, θ)P (Z|θ)

=
S∏

s=1

N∏
i=1

T∏
t=1

[
1√

2πσs
exp

{
− 1

2σ 2
s

[
yit − bs −

r∑
j=1

ζλsj

( L∑
l=1

βsjl Bl(wit j)
)
xit j

]2
}]I(zit=s)

×
S∏

u=1

S∏
s=1

N∏
i=1

T∏
t=2

p
I(zi,t−1=u;zit=s)
itus

S∏
s=1

pns1
s ,

where I(·) is the indicator function, and ns1 is the sample size of state s at initial time t = 1. By introducing a penalty to 
‖hsj(w)‖ = (

βT
sj Bs(w)

)2
, the penalized complete-data likelihood function can be expressed as follows:

Likpen = Lik −
S∑

s=1

r∑
j=1

ρsj(β
T
sj Bsj)

2, (9)

where Bsj is the submatrix of B j = [Bl(wit j)]N T ×L with the rows corresponding to Zit �= s deleted, and ρsj is a turning 
parameter that determines the magnitude of the adaptive penalty imposed on ‖hsj(·)‖ for s = 1, · · · , S and j = 1, · · · , r.

In this study, we follow Berry et al. (2002) and Kang et al. (2018) to set ρsj = 1/n2
s to standardize ‖hsj(w)‖, where ns =∑N

i=1
∑T

t=1 I(zit = s). This standardization can eliminate the effect of the state-specific sample size on the identification of a 
minimal-length hsj(w). Let Dsj = BsjBT , the penalty term in (9) can then be rewritten as 

∑S
s=1

∑r
j=1(

1 βT Bsj)
( 1 βT Bsj

)T =
sj ns sj ns sj

4
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∑S
s=1

∑r
j=1 βT

sj

(
n2

s D−1
sj

)−1
βsj , which can be implemented under the Bayesian framework by assigning the normal prior 

distribution N(0, n2
s D−1

sj ) to βsj .
In Bayesian analysis, label switching is another identifiability issue for mixture-type models. We use the permutation 

sampler (Frühwirth-Schnatter, 2001) to address the label switching problem. The permutation sample is implemented by 
inserting an additional step in each MCMC iteration to verify the proposed constraint and then permute labels accordingly.

3.4. Prior specification

To conduct a Bayesian analysis, prior distributions for the unknown parameters should be specified. Following the exist-
ing literature (Lu and Song, 2012; Liu et al., 2021; Ressell and Telesca, 2017), we consider the following prior distributions 
for the unknown parameters:

(p1, · · · , pS) ∼ Dirichlet(a0, · · · ,a0),

ϕus ∼ N(ϕus0,σ
2
us0), α ∼ N(α0,�α), bs ∼ N(μs0,σ

2
s0),

σ 2
s ∼ IG(ξs0, τs0), λsj ∼ U (0,dsj0), βsj ∼ N(0,n2

s D−1
sj ),

(10)

where a0, ϕus0, σ 2
us0, α0, �α , μs0, σ 2

s0, ξs0, τs0, and dsj0 are hyperparameters with preassigned values, Dirichlet(·) denotes 
the Dirichlet distribution, U (·, ·) indicates the uniform distribution, and IG(·, ·) stands for the inverse Gamma distribution.

To prevent overfitting due to the use of a large number of knots, Eilers and Marx (1996) proposed using a difference 
penalty on coefficients of adjacent B-splines. In the Bayesian framework, the penalization can be implemented by assigning 
random walk priors to β sj (Lang and Brezger, 2004; Lu and Song, 2012). Unlike the preceding works that introduce random 
walk priors to βsj to avoid a large number of knots L, this study adopts the spline sieve space method to determine a 
relatively small L based on the sample size to prevent overfitting. Therefore, we only need to consider the normal prior of 
βsj specified in (10) to implement the penalization as described in Equation (9) in Section 3.3. Our numerical studies show 
that this normal prior works satisfactorily.

Based on the above arguments, two main differences exist between the proposed approach and the work of Kang et al. 
(2019). First, we consider a varying-coefficient conditional model to investigate how the effects of explanatory variables vary 
smoothly over the group stratified by other covariates and thus allow the nonlinear interaction effects between potential 
covariates and specific effect modifiers. By contrast, Kang et al. (2019) considered a semiparametric conditional model to 
examine the nonlinear effects of covariates on the outcome of interest. Therefore, the focuses of these two conditional 
regression models are different. Second, our study aims to uncover the zero-effect regions of the varying coefficients. We 
introduce a soft-thresholding operator to coefficient functions and develop a novel algorithm that incorporates B-spline 
approximation, spline sieve space method, and a prior distribution with penalty to facilitate a simultaneous parameter 
estimation and local sparsity detection under the Bayesian framework. On the contrary, Kang et al. (2019) did not consider 
such a local sparsity, thereby failing to denoise the estimated functional effects of interest.

3.5. Posterior sampling

The main task of posterior inference is to sample from P (θ |Y). However, directly sampling from this posterior distribution 
is difficult because it involves high-dimensional integral with respect to Z. We instead work on p(θ , Z|Y) and use MCMC 
techniques, such as the Gibbs sampler and Metropolis–Hastings (MH) algorithm, to implement the posterior sampling. The 
full conditional distributions involved in the MCMC algorithm are outlined as follows:

(1) Full conditional distribution of (p1, p2, · · · , pS):

(p1, p2, · · · , pS |·) ∼ Dirichlet(a0 + n11,a0 + n21, · · · ,a0 + nS1).

(2) Full conditional distribution of ϕus:

p(ϕus|·) ∝ exp

{ S∑
v=s

N∑
i=1

T∑
t=2

log p
I(Zi,t−1=u,zit=v)

ituv − (ϕus − ϕus0)
2

2σ 2
us0

}
.

(3) Full conditional distribution of α:

p(α|·) ∝ exp

{ S∑
u=1

S∑
s=1

N∑
i=1

T∑
t=2

log p
I(Zi,t−1=u,zit=s)
itus − 1

2
(α − α0)

T �−1
α (α − α0)

}
.

(4) Full conditional distribution of σ 2
s :

σ 2
s ∼ IG

(
ξs0 + ns

2
, τs0 + 1

2

N∑ T∑
t=1

I(zit = s)
[

yit − bs −
r∑

ζλsj

( L∑
βsjl Bl(wit j)

)
xit j

]2
)

.

i=1 j=1 l=1

5
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(5) Full conditional distribution of bs:

bs ∼ N

(
2nsȲ sσ

2
s0 + 2σ 2

s μs0

nsσ
2
s0 + σ 2

s
,

σ 2
s0σ

2
s

nsσ
2
s0 + σ 2

s

)
, where Ȳ s = 1

ns

N∑
i=1

T∑
t=1

yit I(zit = s).

(6) Full conditional distribution of λsj :

p(λsj|·) ∝ I(0 < λsj < dsj0)

N∏
i=1

T∏
t=1

[
exp

{
−

[
yit − bs − ∑r

j=1 ζλsj

( L∑
l=1

βsjl Bl(wit j)
)
xit j

]2

2σ 2
s

}]I(zit=s)

.

(7) Full conditional distribution of β sj :

p(βsj|·) ∝ exp

{
− 1

2n2
s
βsj Dsjβsj −

N∑
i=1

T∑
t=1

I(zit = s)
[

yit − bs −
r∑

j=1
ζλsj

( L∑
l=1

βsjl Bl(wit j)
)
xit j

]2

2σ 2
s

}
.

(8) Full conditional distribution of zit :

p(zit |·) ∝ p(yi, zit |θ) = p(yi,1:t, zit |θ)p(yi,t+1:T |zit, θ)
.= qit(yi, zit |θ)q̄it(yi |zit, θ),

where yi = (yi1, · · · , yiT )T ; yi,1:t and yi,t+1:T denote the observations up to time t and from t + 1 to T , respectively, for 
subject i.

The derivations of the full conditional distributions are provided in the Appendix.

4. Simulation

4.1. Simulation 1

In this section, we assess the performance of the proposed method through simulation studies. We consider an HMM 
with S = 2 as follows:

logit(ηitus) = ϕus + α′cit, (11)

[yit |zit = s] = bs + gs1(wit1)xit1 + gs2(wit2)xit2 + εit, (12)

where cit = (cit1, cit2, cit3)
′ , cit1 and cit2 are independently generated from Bernoulli(0.5); and cit3 = wit1 = wit2 is gen-

erated from U (−1.5, 1.5); xit1 and xit2 are generated from N(0, 1) and t(4), respectively, where U (·, ·) indicates the 
uniform distribution; t(4) stands for the t distribution with four degrees of freedom; ϕ11 = ϕ21 = 0.1, α = (α1, α2, α3)

′ =
(−0.5, 0.5, −0.8)′ , b1 = −1.5, b2 = 1.5, σ 2

1 = σ 2
2 = 0.3; g11(w) = {1.8w + 0.9}I{w<−0.5} + {1.2w − 0.6}I{w>0.5} , g12(w) =

{w3 − 0.125}I{w<0.5} , g21(w) = {sin( π
2 w + π

2 )}I{−1<w<1} , g22(w) = {1.65 − exp(w)}I{w<ln(1.65)}; the initial probabilities of 
the hidden states are (p1, p2) = (0.4, 0.6).

The hyperparameters of the prior distributions in (10) are assigned as follows: Prior (I) a0 = 1, ϕus0 = 0, σ 2
us0 = 1.0, 

α0 = (0, 0, 0)′ , �α0 = I, μs0 = 0, σ 2
s0 = 1000, ξs0 = 1, τs0 = 0.1, and dsj0 = 0.5. We consider T = 5 and N = 200, 400, such 

that the total sample sizes are 1000 and 2000 with approximately 500 and 1000 samples in each state. The number of spline 
knots L is determined by the spline sieve space method (Yang, 2020) as follows: L = K + d − 1, where d is the order of 
B-splines, and K must satisfy three conditions: (i) K = O (N × T )ν , (ii) 1

K−1 = O (N × T )−ν , and (iii) 0 < ν < 0.5. For example, 
when N = 200, T = 5, and ν = 0.3, we can calculate that K ≈ 7; thus, L ≈ 7 + 3 − 1 = 9. Similarly, when N = 400, T = 5, 
and ν = 0.3, L ≈ 11. Thus, we set L = 9 and 11 when N = 200 and 400, respectively. For comparison, we also consider the 
conventional method without applying soft-threshold operator. In the conventional method, we assign N(0, 100I) prior for 
βsj . The prior specification for other parameters is the same as the previous specification.

We conduct few test runs to decide the number of burn-in iterations at convergence and find that 4,000 burn-in it-
erations are sufficient. Therefore, we collect 10,000 posterior samples after 4,000 burn-in iterations to conduct Bayesian 
inference. The Bayesian estimates of the unknown parameters and coefficient functions can be obtained through the means 
of their posterior samples. Table 1 summarizes the estimation results obtained using the proposed (Soft-thre) and conven-
tional (No-thre) methods based on 100 replicated datasets. The bias (Bias) and root mean square error (Rmse) between the 
Bayesian estimates and true population values of the parameters are used to assess the performance of Bayesian estimation. 
All the bias and Rmse values are close to zero under the “Soft-thre” method, but some of them, especially those related 
to variance parameters, are relatively large under the “No-thre” method. Thus, the proposed method outperforms the con-
ventional one, especially in reducing the biases of variance parameters. As expected, the performance improves when the 
sample size increases. On the basis of 100 replications, the means and standard deviations of the posterior mean estimates 
6
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Table 1
Parameter estimation results under proposed and conventional methods.

Para N = 200, T = 5

Soft-thre No-thre

Prior I Prior II Prior I Prior II

Bias Rmse Bias Rmse Bias Rmse Bias Rmse

p1 0.001 0.001 -0.001 0.001 -0.004 0.001 0.003 0.001
p2 -0.001 0.001 0.001 0.001 0.004 0.001 -0.003 0.001
ϕ1,1 0.009 0.014 0.011 0.015 -0.020 0.021 -0.018 0.019
ϕ2,1 -0.020 0.015 -0.017 0.018 -0.026 0.024 -0.021 0.018
α1 0.005 0.014 -0.006 0.017 0.018 0.026 0.012 0.023
α2 0.011 0.012 0.013 0.016 0.011 0.024 0.016 0.027
α3 -0.012 0.014 -0.011 0.013 -0.010 0.021 -0.017 0.022
b1 -0.001 0.002 0.002 0.001 0.009 0.008 -0.012 0.006
b2 0.006 0.002 0.009 0.002 0.011 0.010 0.007 0.003
σ 2

1 0.020 0.001 0.021 0.002 0.051 0.004 0.056 0.005
σ 2

2 0.019 0.001 0.023 0.002 0.047 0.004 0.052 0.004

Para N = 400, T = 5

Soft-thre No-thre

Prior I Prior II Prior I Prior II

Bias Rmse Bias Rmse Bias Rmse Bias Rmse

p1 -0.000 0.001 0.001 0.001 -0.002 0.001 -0.003 0.001
p2 0.000 0.001 -0.001 0.001 0.002 0.001 0.003 0.001
ϕ1,1 -0.009 0.010 -0.007 0.009 -0.017 0.019 -0.015 0.016
ϕ2,1 -0.018 0.013 -0.014 0.012 -0.021 0.022 -0.019 0.018
α1 -0.004 0.010 0.005 0.011 0.006 0.015 -0.009 0.017
α2 0.006 0.012 0.007 0.014 0.013 0.014 0.016 0.020
α3 0.010 0.011 0.011 0.015 0.011 0.013 -0.013 0.018
b1 0.002 0.001 -0.003 0.001 0.006 0.004 0.010 0.003
b2 -0.005 0.001 0.004 0.001 -0.009 0.005 -0.013 0.004
σ 2

1 0.018 0.001 0.016 0.001 0.046 0.003 0.041 0.003
σ 2

2 0.015 0.001 0.020 0.002 0.035 0.002 0.044 0.003

of threshold parameters λ11, λ12, λ21, and λ22 are 0.253(0.102), 0.311(0.117), 0.319(0.122), and 0.293(0.126) when N = 200
and 0.259(0.126), 0.314(0.115), 0.340(0.126), and 0.314(0.127) when N = 400.

To assess the estimation performance of the varying coefficients, we define the integrated squared error (ISE) and average 
ISE (AISE) as follows: for gsj(w), j = 1, · · · , r,

ISE(gsj(wk)) = 1

ng

ng∑
i=1

[ĝsj(wk) − gsj(wk)]2, AISE = 1

S × r

S∑
s=1

r∑
j=1

ISE(g js(wk)),

where ng is the number of grids, and wks are grids inserted into the range of w . Table 2 reports the means of ISE and 
AISE computed based on 100 replications. The Soft-thre method apparently outperforms the No-thre method in terms of ISE 
and AISE. From the 100 replications, we select the estimated curve with median ISE to further compare the performance of 
the proposed and conventional methods. Fig. 1 shows the median-performing estimates together with their 95% pointwise 
credible intervals of the coefficient functions under N = 400. The left and right panels correspond to the “Soft-thre” and 
“No-thre” methods, respectively. The “Soft-thre” method can effectively uncover zero-effect and tail regions, whereas the 
“No-thre” method exhibits noticeable fluctuations around zero. The median-performing estimated functions under N = 200
and the averages of the estimated functions under both sample sizes demonstrate the superiority of the “Soft-thre” method 
in a similar manner; thus they are omitted.

4.2. Simulation 2

In this section, we conduct sensitivity analyses to examine whether the proposed method is sensitive to the prior spec-
ification, the number of knots used in B-spline approximation, the normality assumption of the random error, and the 
specification of S .

We disturb the hyperparameters in Prior (I) as follows: Prior (II) a0 = 2, ϕus0 = 1, σ 2
us0 = 4.0, α0 = (0, 0)′ , �α0 = 2I, 

μs0 = 1.0, σ 2
s0 = 100, ξs0 = 1, τs0 = 0.01, and dsj0 = 0.7. The estimation results under Prior (II) are also presented in Tables 1

and 2, indicating that both prior inputs produce similar results. Hence, the proposed Bayesian estimation is insensitive to 
the prior specification under consideration.

Next, we consider L = 7 when N = 200 and L = 9 when N = 400 to examine the effect of the number of knots on the 
estimation results, in particular the estimates of the varying coefficients. The prior and other model settings are the same 
7
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Table 2
Coefficient function estimation results under proposed and conventional methods.

N ISE/AISE Soft-thre No-thre

Prior I Prior II Prior I Prior II

N = 200 ISE(g11) 3.26 3.11 4.87 4.79
ISE(g12) 2.91 3.04 3.72 3.84
ISE(g21) 0.71 0.79 1.46 1.61
ISE(g22) 1.53 1.36 2.05 2.19
AISE 2.10 2.08 3.02 3.11

N = 400 ISE(g11) 2.05 2.18 3.95 4.11
ISE(g12) 2.53 2.42 3.31 3.48
ISE(g21) 0.53 0.66 1.10 1.07
ISE(g22) 1.22 1.37 1.89 1.64
AISE 1.58 1.66 2.56 2.58

ISE: integrated squared errors; AISE: averaged integrated squared errors; values 
are the means of ISE and AISE from 100 replications and multiplied by 103.

Table 3
Parameter estimation results under nonnormal error distributions.

Para Nonnormal error distributions

Case 1 Case 2 Case 3 Case 4

Bias Rmse Bias Rmse Bias Rmse Bias Rmse

p1 0.003 0.001 -0.002 0.001 -0.009 0.002 0.003 0.001
p2 -0.003 0.001 0.002 0.001 0.009 0.002 -0.003 0.001
ϕ1,1 0.012 0.013 -0.016 0.014 -0.022 0.018 0.015 0.014
ϕ2,1 -0.010 0.011 0.011 0.012 -0.017 0.014 -0.019 0.021
α1 -0.018 0.014 0.016 0.011 -0.010 0.008 0.009 0.007
α2 0.016 0.010 0.024 0.018 -0.021 0.017 -0.016 0.012
α3 0.009 0.011 -0.020 0.016 0.013 0.011 0.018 0.014
b1 -0.005 0.004 0.012 0.003 -0.027 0.022 -0.036 0.024
b2 0.011 0.009 -0.007 0.004 0.022 0.018 -0.019 0.016
σ 2

1 0.039 0.007 0.041 0.011 0.068 0.016 0.089 0.021
σ 2

2 0.044 0.010 0.046 0.012 0.031 0.012 0.074 0.013

as in Simulation 1. We also collect 10,000 iterations after discarding 4,000 burn-ins to conduct posterior inference. The 
estimation results under such smaller numbers of knots are similar to the previous ones and not reported.

We also access the sensitivity of the proposed method to the error distribution. A total of 100 datasets is generated
from the proposed model with each of the following nonnormal random errors: (1) εit ∼ U (−1, 1), (2) εit ∼ t(4), (3) εit ∼
Gamma(1, 2), and (4) εit ∼0.6N(−0.3, 0.3) + 0.4N(0.5, 1), where Gamma(·, ·) denotes the gamma distribution. The random 
errors are then transformed to have the same mean and variance as in Simulation 1 for comparison. The prior and other 
model settings are also the same as in Simulation 1. We conduct estimation using the proposed method by disregarding the 
nonnormality of εit . Table 3 presents the parameter estimates under the nonnormal random errors. Majority of parameter 
estimates perform similarly to those in Table 1, except that the variance estimates are slightly biased. Moreover, we select 
the estimated curve with median ISE from the 100 replications to examine the performance of the estimated functions 
when the normality of the random error is violated. Fig. 2 presents the estimated coefficient functions together with their 
95% pointwise credible intervals under the nonnormal random error of Cases (2) and (3). Despite violation of the normality 
assumption, the proposed method can still detect the zero-effect regions and the patterns of the coefficient functions.

Finally, we disturb the number of hidden states S by setting S = 1 and 3 and reanalyze the datasets generated in 
Simulation 1 with S = 2 based on the misspecified models. Table 4 presents the posterior means of the intercept and 
residual variance in the conditional model (12) when S is misspecified as S = 3. The results indicate that the new state (state 
2) tends to absorb samples of the two other states, resulting in an intercept estimate that somehow compromises those of 
the two other states and a considerably large residual variance estimate in the nonexistent state. Likewise, the estimation 
results of the parameters in (11) and the varying-coefficient functions in (12) are misleading when S is misspecified.

4.3. Simulation 3

In this section, we assess the performance of DIC in selecting the number of hidden states. We considered five competing 
models, M1 to M5, where Mk is a model defined by (12) with S = k, k = 1, · · · , 5. Here, M2 is the true model, and M1, M3, 
M4, and M5 are models with misspecified numbers of hidden states. In addition, we consider Mc with S = 2 and constant 
coefficients to examine whether DIC can select the varying-coefficient HMM over its constant-coefficient counterpart. The 
DIC values of the competing models are computed based on the 100 datasets generated in Simulation 1 and reported in 
Fig. 3, which suggests that the true model M2 is consistently selected in each replication.
8
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Fig. 1. Estimated coefficient functions with the median performance of 100 replications under N = 400, T = 5 and Prior (I). The left and right panels 
correspond to the “Soft-thre” and “No-thre” methods, respectively. Black solid line indicates the actual curve, red dotted line is the estimated curve, and 
blue dotted lines are the 2.5% and 97.5% pointwise quantiles. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

5. Application

We conducted an application to the ADNI study to demonstrate the utility of the proposed method. Detailed information 
about ADNI can be found in an official website (www.adni -info .org). We focused on 512 participants collected from ADNI-1 
and included their clinical and genetic variables at five time points, including the baseline, sixth month, 12th month, 24th 
month, and 36th month. Thus, N = 512 and T = 5.
9
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Fig. 2. Estimated coefficient functions with the median performance of 100 replications under nonnormal random error in Cases (2) and (3), N = 400, T = 5, 
and Prior (I). The left and right panels correspond to the nonnormal random errors of Cases (2) and (3), respectively. Black solid line indicates the actual 
curve, red dotted line is the estimated curve, and blue dotted lines are the 2.5% and 97.5% pointwise quantiles.

We used FAQ score, which ranges from 0 to 30 with high scores indicating poor cognitive ability, as response variable 
(yit ) to reflect cognitive impairment over time. Two continuous covariates, namely, the logarithm of the ratio of hippocampal 
volume over whole brain (xit1) and age (xit2), were considered in the conditional varying coefficient model. We included
hippocampal volume and age as potential risk factors xit j, j = 1, 2 in the conditional model because published reports 
(Kesslak et al., 1991; Jack et al., 1992; Dickerson and Wolk, 2013; Kang et al., 2019) revealed that the atrophy of the 
10
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Table 4
Estimation result with misspecified number of hidden states.

Parameters in conditional varying-coefficient regression model (12)

State 1 State 2 State 3

Para True Mean SD Para True Mean SD Para True Mean SD

b1 -1.5 -1.593 0.049 b2 N.A. -1.140 0.281 b3 1.5 1.502 0.049
σ 2

1 0.3 0.515 0.078 σ 2
2 N.A. 1.384 0.936 σ 2

3 0.3 0.535 0.058

True: true value; Mean: posterior mean; SD: posterior standard deviation; N.A.: unavailable.

Fig. 3. Boxplot of the DIC values of the competing models in Simulation 3.

hippocampal formation and age were significant diagnostic markers of clinical dementia. Moreover, considering the evident 
positive effect of education level on cognitive impairment (e.g. Feng et al., 2020), we regarded continuous variable “year of 
education” as the independent variable (wit1 = wit2 = wit ) of the varying coefficients to examine its nonlinear interaction 
effects with hippocampal volume and age. The variable wit took real numbers in the range of [6, 24] with decimal points. 
In addition, we considered two variables, gender (cit1, 0 = female; 1 = male) and APOE-ε4 (cit2 and cit3), coded as 0, 1, and 
2, to denote the number of APOE-ε4 alleles in the transition model to examine their effects on the between-state transition 
because they were typical time-invariant individual characteristics and had been identified as potential risk factors for the 
AD progression (Okuizumi et al., 1994; Zhou et al., 2020). Four continuous variables, FAQ score, hippocampal volume, age, 
and years of education, were standardized prior to analysis. The aims of this analysis were (i) to identify the underlying 
hidden states of cognitive impairment and the factors that influenced the between-state transition, (ii) to investigate the 
effect of hippocampal volume and age on cognitive impairment in each hidden state and how these state-specific effects 
changed over education level, and (iii) to uncover the zero-effect regions of the varying coefficients.

In the implementation of the MCMC algorithm, we set the prior input to be the same as Prior (I) in Simulation 1 and L =
11 in cubic B-splines. The DIC was used to determine the number of hidden states. We considered varying- and constant-
coefficient HMMs with the number of hidden states from 1 to 5. The corresponding DIC values were 16182, 12086, 10319, 
11725, and 12743 for varying-coefficient HMMs and 17421, 15112, 14205, 14832, and 15327 for constant-coefficient HMMs. 
Thus, the three-state varying-coefficient HMM with the smallest DIC value was selected. Identifiability constraint b1 < b2 <

b3 was used to avoid label switching in estimation. In monitoring convergence, we draw three MCMC chains from different 
initial values and computed the estimated potential scale reduction (EPSR) value for all the parameters (Gelman, 1996). The 
EPSR plots shown in Fig. 4 indicated that the MCMC algorithm converged rapidly within 4,000 iterations. Therefore, we 
collected 10,000 observations after discarding 4,000 burn-in iterations. Table 5 and Fig. 5 present the estimation results. We 
have the following observations.

First, b1, b2, and b3 are ranked in an ascending order, indicating that patients in state 1 obtained the lowest FAQ score, 
whereas those in state 3 got the highest. Patients’ cognitive ability to function independently in daily life steadily deterio-
rated from state 1 to state 3. In accordance with the existing literature (e.g., Kantarci et al., 2013; Zhou et al., 2020), the 
three states can be explained as cognitive normal (CN) control, MCI, and AD, representing three major neurodegenerative 
stages in AD progression.

Second, in the transition model, α̂1 = −0.108(0.111) is the estimates of the posterior mean and posterior standard 
deviation (in parentheses) of gender (1 = male). Based on this result, we can conclude that gender only slightly (or in-
11
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Fig. 4. Plot of estimated potential scale reduction (EPSR) values for the parameters in the ADNI-1 (Alzheimer′s Disease Neuroimaging Initiative) data analysis. 
The horizontal dotted line is EPSR=1.2.

Table 5
Parameter estimation results in the ADNI study.

Parameters in conditional varying-coefficient regression model

State 1 State 2 State 3

Para Est SD Para Est SD Para Est SD

b1 -0.614 0.001 b2 -0.395 0.014 b3 0.893 0.043
σ 2

1 0.014 0.002 σ 2
2 0.053 0.006 σ 2

3 1.132 0.059

Parameters in probability transition model

p1 0.334 0.022 p2 0.471 0.026 p3 0.195 0.021
ϕ1,1 1.555 0.129 ϕ2,1 1.019 0.289 ϕ3,1 -1.667 0.147
ϕ1,2 0.705 0.131 ϕ2,2 -1.359 0.149 ϕ3,2 -1.036 0.142
α1 -0.108 0.111 α2 -0.447 0.105 α3 -0.723 0.165

Para: parameter; Est: posterior mean estimate; SD: posterior standard deviation estimate.

significantly) affects the between-state transition. Moreover, α̂2 = −0.447(0.105) and α̂3 = −0.723(0.165) are the estimated 
effects of carrying one and two APOE-ε4 alleles, respectively, suggesting that carrying APOE-ε4 alleles significantly and neg-
atively affects logit[P (zit = s|zit ≥ s, zi,t−1 = u)] with a more pronounced effect when carrying two alleles. Thus, carrying 
APOE-ε4 alleles increases the risk of transitioning to a worse state, and the risk is higher for two-allele carriers than for 
one-allele carries. This finding is in line with the existing literature (Lee et al., 2015).

Third, Fig. 5 shows that the effect of hippocampal volume on FAQ is negative in general, implying that participants with 
a greater hippocampal volume tend to have a lower FAQ score and thus less cognitive impairment. This finding is in good 
agreement with the previous medical reports that the hippocampus helps consolidate outside information from short- to 
long-term memory (Jack et al., 1992). Furthermore, the current study provides additional insights into the dynamic patterns 
and local sparsity of the effect. In CN and MCI states, hippocampal volume negatively affects cognitive impairment for par-
ticipants with fairly low education, and such negative effect decreases when participants’ education years increase, and then 
becomes zero when education years exceed 16 (university graduate). In AD state, the negative effect of hippocampal volume 
is much more pronounced. This pattern aligns with the finding of Kang et al. (2019), who also revealed that hippocampal 
volume affects FAQ more significantly in AD state than in CN state. Moreover, Feng et al. (2020) identified a positive effect 
of education level on cognitive impairment based on the ADNI dataset. This finding explains why the magnitude of the in-
teractive effect of hippocampal volume and education level, as shown in Fig. 5, exhibits a decreasing trend in all the states. 
Such a decreasing trend implies that a high education level can eliminate the negative impact of hippocampal volume on 
cognitive impairment to a certain extent. However, neither the additive HMMs proposed by Kang et al. (2019) nor the linear 
model considered by Feng et al. (2020) cannot obtain such an interesting finding.

Fourth, in CN and MCI states, the effect of age on FAQ exhibits apparent zero-effect regions for participants whose 
education years exceed 12 (high school graduate). However, in AD state, such age effect becomes significantly positive 
regardless of education years, implying that older patients are likely to suffer from severer cognitive impairment than 
younger patients no matter their education level. This result also aligns with the finding of Kang et al. (2019), who reported 
that age affects cognitive function mainly in AD state.

In summary, this data analysis reveals that APOE-ε4 carriers have high risk of transitioning from a light to a severe cog-
nitive impairment state. Moreover, hippocampal volume and age hardly influence cognitive impairment for highly educated 
participants in early to middle cognitive impairment stages (CN and MCI states). However, in a late progression stage (AD 
state), they become prominent dementia risk factors regardless of the length of education of the patients.
12
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Fig. 5. Coefficient function estimate results of ADNI-1 data analysis. The red solid line is the mean estimated curve, the blue dotted lines are the 2.5 and 
97.5 quantile estimated curve, and y = 0 is denoted in each picture by a black dotted line to show zero-effect.

6. Discussion

We develop a heterogeneous varying-coefficient HMM with zero-effect regions to analyze multivariate heterogeneous 
longitudinal data. The proposed model consists of a continuation-ratio logit transition model for examining the influence 
of potential covariates on the odds of transitioning from one hidden state to another and a conditional varying-coefficient 
regression model for investigating the functional covariate effects on the response of interest. Moreover, we introduce a 
soft-thresholding operator to detect the zero-effect regions of the state-specific coefficient functions. To the best of our 
knowledge, this study is the first to consider varying-coefficient HMMs and the related zero-effect region detection.

The proposed method can be extended in several directions. The current model assumes that random errors are normally 
distribution. This normality assumption may be violated in practice. Although our simulation study shows that the estima-
tion results are relatively robust to several nonnormal random errors, relaxing the normality assumption of the random 
13
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error through sophisticated techniques, such as the Dirichlet process as a prior (Matthew and Alan, 2013), is greatly inter-
esting and worthy of further investigation. In addition, variable selection is an important inference beyond estimation. The 
commonly used Bayesian variable selection method, such as reversible jump MCMC algorithm (Green, 1995), Bayesian Lasso 
(Park and Casella, 2008), and spike-and-slab prior procedure (Pan et al., 2021), can be developed to determine the number 
of hidden states and select important variables in the context of the proposed model. Missing data are frequently encoun-
tered in longitudinal data analysis. Accommodation of nonignorable missingness in longitudinal response and covariates is 
an important topic and requires substantial efforts in the future. Moreover, the functions of univariate covariates, gsj(·)s, in 
the proposed model can be extended to the functions of multivariate covariates. In this case, we can use tensor product 
B-splines (e.g., Song et al., 2014) to estimate the function of multivariate covariates. Finally, we assume that longitudinal 
observations are independent conditional on their hidden states. Thus, the dependence between the observations from a 
subject is explained by hidden states and their transition. This assumption can be relaxed by adding random effects into 
conditional and/or transition models.
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Appendix A

(1) Full conditional distribution of (p1, p2, · · · , pS):

p(p1, p2, · · · , pS |·) ∝
S∏

s=1

pa0−1
s

S∏
s=1

pns1
s =

S∏
s=1

pa0+ns1−1
s ,

where ns1 = ∑N
i=1 I(Zi1 = s). Thus, the full conditional distribution of (p1, p2, · · · , pS) is

(p1, p2, · · · , pS |·) ∼ Dirichlet(a0 + n11,a0 + n21, · · · ,a0 + nS1)

(2) Full conditional distribution of ϕus:

p(ϕus|·) ∝ exp

{
− (ϕus − ϕus0)

2

2σ 2
us0

}
exp

{
log

S∏
v=s

N∏
i=1

T∏
t=2

p
I(zi,t−1=u,zit=v)

ituv

}

= exp

{ S∑
v=s

N∑
i=1

T∑
t=2

log p
I(zi,t−1=u,zit=v)

ituv − (ϕus − ϕus0)
2

2σ 2
us0

}
.

(3) Full conditional distribution of α:

p(α|·) ∝ exp

{
− 1

2
(α − α0)

T �−1
α (α − α0)

}
exp

{
log

S∏
u=1

S∏
s=1

N∏
i=1

T∏
t=2

p
I(zi,t−1=u,zit=s)
itus

}

= exp

{ S∑
u=1

S∑
s=1

N∑
i=1

T∑
t=2

log p
I(zi,t−1=u,zit=s)
itus − 1

2
(α − α0)

T �−1
α (α − α0)

}
.

(4) Full conditional distribution of σ 2
s :

p(σ 2
s |·) ∝ (σ 2

s )−ξs0−1e
− τs0

σ2
s σ−ns

s

× exp

{
− 1

2σ 2
s

N∑
i=1

T∑
t=1

I(zit = s)
[

yit − bs −
r∑

j=1

ζλsj

( L∑
l=1

βsjl Bl(wit j)
)
xit j

]2
}

∝ (σ 2
s )−ξs0− ns

2 −1 exp

{
−

τs0 + 1
2

N∑
i=1

T∑
t=1

I(zit = s)
[

yit − bs −
r∑

j=1
ζλsj

( L∑
l=1

βsjl Bl(wit j)
)
xit j

]2

σ 2
s

}
,

where ns = ∑N
i=1

∑T
t=1 I(zit = s). Thus, the full conditional distribution of σ 2

s is
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σ 2
s ∼ IG

(
ξs0 + ns

2
, τs0 + 1

2

N∑
i=1

T∑
t=1

I(zit = s)
[

yit − bs −
r∑

j=1

ζλsj

( L∑
l=1

βsjl Bl(wit j)
)
xit j

]2
)

.

(5) Full conditional distribution of bs:

p(bs|·) ∝ exp
{ (bs − μs0)

2

2σ 2
s0

}

×
N∏

i=1

T∏
t=1

[
1√

2πσs
exp

{
− [yit − bs − ∑r

j=1 ζλsj

(∑L
l=1 βsjl Bl(wit j)

)
xit j]2

2σ 2
s

}]I(zit=s)

.

Let Ys =
{[

yit − ∑r
j=1 ζλsj

(∑L
l=1 βsjl Bl(wit j)

)
xit j

]
I(zit = s) : i = 1, · · · , N; t = 1, · · · , T

}
�= {Ys1, · · · , Ysns }, where ns =∑N

i=1
∑T

t=1 I(zit = s) and 
∑S

s=1 ns = N × T . Then, p(bs|·) can be rewritten as follows:

p(bs|·) ∝ exp

{
− (bs − μs0)

2

2σ 2
s0

}
exp

{
−

∑ns
i=1(Ysi − bs)

2

2σ 2
s

}

= exp

{
− 1

2

[b2
s − 2μs0 + μ2

s0

σ 2
s0

+ b2
s − 2Ys1bs + Y 2

s1 + · · · + b2
s − 2Ysns bs + Y 2

sns

σ 2
s

]}

= exp

{
− 1

2

[ (nsσ
2
s0 + σ 2

s )b2
s − (2nsȲ sσ

2
s0 + 2σ 2

s μs0)bs + σ 2
s0

∑ns
i=1 Y 2

si + σ 2
s μ2

s0

σ 2
s0σ

2
s

]}

= exp

{
− 1

2

[b2
s − 2ns Ȳsσ

2
s0+2σ 2

s μs0

nsσ
2
s0+σ 2

s
bs + σ 2

s0

∑ns
i=1 Y 2

si+σ 2
s μ2

s0

nsσ
2
s0+σ 2

s

σ 2
s0σ

2
s

nsσ
2
s0+σ 2

s

]}
,

where Ȳ s = 1
ns

∑ns
i=1 Ysi . Thus, the full conditional distribution of bs is as follows:

bs ∼ N

(
2nsȲ sσ

2
s0 + 2σ 2

s μs0

nsσ
2
s0 + σ 2

s
,

σ 2
s0σ

2
s

nsσ
2
s0 + σ 2

s

)
.

(6) Full conditional distribution of λsj :

p(λsj|·) ∝ I(0 < λsj < dsj0)

N∏
i=1

T∏
t=1

[
exp

{
−

[
yit − bs −

r∑
j=1

ζλsj

( L∑
l=1

βsjl Bl(wit j)
)
xit j

]2

2σ 2
s

}]I(zit=s)

.

(7) Full conditional distribution of β sj :

p(βsj|·) ∝ exp
{

− 1

2n2
s
βsj Dsjβsj

}

×
N∏

i=1

T∏
t=1

[
exp

{
−

[
yit − bs −

r∑
j=1

ζλsj

( L∑
l=1

βsjl Bl(wit j)
)
xit j

]2

2σ 2
s

}]I(zit=s)

∝ exp

{
− 1

2n2
s
βsj Dsjβsj −

∑
zit=s

[
yit − bs −

r∑
j=1

ζλsj

(∑L
l=1 βsjl Bl(wit j)

)
xit j

]2

2σ 2
s

}
.

(8) Full conditional distribution of zit :
We adopt the recursive forward filtering backward sampling (FFBS) algorithm to sample zit from p(zit |·). The FFBS 

algorithm is implemented as follows:

p(zit |·) ∝ p(yi, zit |θ) = p(yi,1:t, zit |θ)p(yi,t+1:T |zit, θ)
.= qit(yi, zit |θ)q̄it(yi |zit, θ).

Moreover, we initialize

qi1(yi, zi1|θ) = p(yi1, zi1|θ) = p(yi1|zi1, θ)p(zi1|θ),
15
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and calculate qit(yi, zit |θ) for t = 2, · · · , T in a recursion manner as follows:

qit(yi, zit |θ) = p(yi,1:t, zit |θ) =
S∑

u=1

p(yi,1:t, zit, zi,t−1 = u|θ)

=
S∑

u=1

p(yi,1:t−1, zi,t−1 = u|θ)p(zit |zi,t−1 = u, θ)p(yit |zit, θ)

=
S∑

u=1

qi,t−1(Yi, zi,t−1 = u|θ)p(zit |zi,t−1 = u, θ)p(yit |zit, θ),

where p(zit |zi,t−1 = u, θ) is the transition probability.
We also initialize q̄iT (yi |zit, θ) = 1 and calculate q̄it(yi |zit, θ) for t = T − 1, · · · , 1 as

q̄it(yi |zit, θ) = p(yi,t+1:T |zit, θ) =
S∑

u=1

p(yi,t+1:T , zi,t+1 = u|zit, θ)

=
S∑

u=1

{p(yi,t+2:T )|zi,t+1 = u, θ)p(zi,t+1 = u|zit, θ)p(yi,t+1|zi,t+1 = u, θ)}

=
S∑

u=1

{q̄i,t+1(yi |zi,t+1 = u, θ)p(zi,t+1 = u|zit, θ)p(yi,t+1|zi,t+1 = u, θ)},

where p(zi,t+1 = u|zit, θ) is the transition probability and p(yi,t+1|zi,t+1 = u, θ) is the likelihood in hidden state zi,t+1 = u.
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